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Abstract 

The ability of traffic controllers to separate 
aircraft determines the capacity of the region of 
airspace under their control, referred to as a sector. 
Complexity metrics, specifically dynamic density, is 
used as an estimate for controller workload. The 
prediction of dynamic density is required for the 
development of efficient long-term air traffic plans. 
This paper explores the influence of trajectory 
errors on the prediction of dynamic density and 
uses a worst-case analysis to describe the conditions 
under which forecast errors may lead to excessive 
complexity. Although the approach has general 
applicability, it is described using one definition of 
complexity. Depending on the sector and the 
complexity function, when a sector is highly 
congested, the method identifies aircraft entering 
the sector at certain locations, boundaries and 
altitudes, whose errors in prediction contribute 
significantly to the increase in workload. If these 
errors cannot be reduced, it may be necessary to 
limit the traffic approaching the sector from these 
altitudes and boundaries. 

Introduction 
Air traffic controllers have the responsibility of 

separating aircraft operating within a region of airspace 
under their control, referred to as a sector. The sectors 
are designed such that controllers are able to handle the 
usual flow of traffic. Various Traffic Flow 
Management  (TFM) techniques are used to increase 
flow efficiency while maintaining the workload of the 
controllers such that safety remains uncompromised. 
Currently, strategic predictions of sector aircraft count 
are compared to the established aircraft count 
threshold, referred to as the Monitor Alert Parameter 
(MAP). MAP values do not adequately represent the 
level of difficulty experienced by the controllers under 
different traffic conditions. It has been recognized that 
workload should be based not only on the number of 
aircraft, but also their relation to each other and the 

airspace geometry [1]. This concept, which includes 
both the intrinsic nature of traffic (airspace complexity) 
and human factor aspects related to the controller has 
come to be known as “dynamic density.” The words 
airspace complexity and dynamic density are used 
interchangeably in this paper. 

Earlier studies show that dynamic density is 
highly correlated with sector controller activity levels 
and it can be used as a good indicator of controller 
workload [2]. Several efforts have been made to 
identify dynamic density measures that correlate well 
with workload in studied sectors with prevalent 
procedures [3]. Dynamic density models from different 
studies depend on the procedures, displays and the 
communications equipment used during the calibration 
of the workload. However, many of the factors 
affecting controller workload are common to all these 
models.  

Sector capacities are used as constraints in the 
design of TFM algorithms. For dynamic density and 
other airspace complexity measures [4-7] to be useful 
as traffic management tools, it is necessary to predict 
them for durations of 30 to 120 minutes. Since 
dynamic density is a function of the position and 
velocity of all aircraft in a sector, a trajectory 
prediction algorithm can be used to predict dynamic 
density [8]. The demand in a sector varies due to 
uncertainties in aircraft departure times, unscheduled 
and cancelled departures and changes to aircraft 
trajectories to avoid congested areas and areas affected 
by bad weather. The errors in the sector count vary 
with the prediction interval and can be as high as six 
aircraft for long durations [9]. As a result, there are 
situations where the actual number of aircraft in a 
sector can exceed MAP by several aircraft.  

With a few exceptions [10-11], there has been 
very little work in the study of errors in the prediction 
of dynamic density. When the expected demand in the 
sector is well below MAP, addition of one or two 
unexpected aircraft is likely to keep the overall aircraft 
count below MAP and the associated traffic 



 

manageable. The uncertainties are more significant 
when a sector has high levels of traffic since the 
addition of one or more aircraft may increase the 
controller workload beyond what can be handled 
safely. Recently, reference [12] has proposed re-
calibrating dynamic density models based on the 
predictability of various components of the metric.  

This paper takes a different approach to the 
prediction of dynamic density by examining the errors 
when the sector count is close to the MAP value. Thus, 
characterizing the impact of one or two additional 
unanticipated aircraft on traffic complexity of already 
congested sectors would be of significant value. Such 
impact is not uniform in all appearances of an 
additional aircraft, but may depend on the location and 
the intent of the unexpected aircraft relative to the 
expected aircraft.  Knowledge of what is the magnitude 
of the worst-case impact and in what situations the 
impact would be worst would be useful in traffic flow 
management. Therefore, this study provides a fresh 
approach by focusing on the impact of additional 
unexpected aircraft on already congested sectors where 
managing the situation can be a problem.  

The paper is organized as follows: The section on 
Airspace Complexity provides a status of the current 
research on air space complexity. The section on 
Forecasting Complexity provides an approach for 
dealing with airspace complexity in TFM applications 
by using some of the critical components of airspace 
complexity and studying its variation under 
perturbations. The Results section provides results 
based on this approach for a busy sector ZDC32 in the 
Washington Center. The next section looks at the 
generality of the observations for ZDC32 by 
considering the complexity behavior of ZID81, another 
sector in the U.S airspace. The last section presents 
conclusions based on the work reported in this paper. 

Airspace Complexity 
The capacity of airspace is limited by the controller’s 
ability to perform the tasks to maintain a safe system. 
The controller’s ability to perform the tasks depends on 
the combination of traffic, procedures, tools, and 
mental models used to perform the tasks. Currently, the 
capacity of a sector is measured in terms of the 
maximum number of aircraft that can be 
accommodated in a sector, a quantity referred to as 
Monitor Alert Parameter. The traffic load in a sector is 
maintained at a level below the capacity of the 

airspace. Although easy to measure and understand, 
MAP is not a satisfactory measure of capacity. It has 
been suggested by the Radio Technical Commission on 
Aeronautics [1] that the monitor/alert function should 
be extended to include measures of sector complexity 
and controller workload. These measures should be 
based not only on the number of aircraft, but their 
relation to each other, airspace geometry and varying 
traffic flow conditions. This concept has come to be 
known as “dynamic density.”  It is also referred to as 
airspace complexity [3-5]. 

Research on dynamic density relates traffic 
complexity factors, such as number of aircraft, aircraft 
separation and others, to controller workload. 
Researchers have identified dynamic density measures 
of complexity that correlate well with workload in 
studied sectors with prevalent procedures [1-2]. It has 
been argued that traffic pattern is a significant factor in 
a controller’s cognitive ability [4]. As described later in 
the paper, published models derived in specific studies 
do not correlate well with each other and, hence, the 
generality of these measures beyond studied sectors 
seems to be in doubt. Dynamic density research 
identifies factors that contribute to the structural or 
traffic complexity of the situation.  

Recently, there have been efforts to generate 
simplified measures of airspace complexity [13]. These 
models use the principal components of earlier airspace 
complexity metrics. Three airspace complexity 
measures are used in this paper. The first utilizes 
airspace complexity, C1, as described in [2]. C1 is a 
linear function of the number of aircraft in the sector 
(N), number of aircraft with heading change (NH), 
number of aircraft with speed change (NS), number of 
aircraft with altitude change (NA) and number of 
aircraft with horizontal and vertical proximity 
parameters (S5, S10, S25, S40 and S70). Airspace 
complexity is a linear combination of the above 
factors, i.e., 

C1 = W1•N + W2•NH + W3•NS + W4•NA +W5•S5 
+ W6•S10 + W7•S25 + W8•S40 + W9•S70.  

The weights, (W1,…,W9) were validated in a real-time 
operational environment based on the input from a 
large group of controllers. 

The second airspace complexity function, C2, is a 
simplified version of [3] based on the components that 
contribute the most to that measure: aircraft density 
(AD1), number of aircraft close to sector boundary 



 

(BPR), number of aircraft in the sector (N) and sector 
volume (SVOL).   Although C2 does not correlate well 
with C1, the principal components of C2, namely, 
AD1, BPR, N and SVOL correlate well with C1 with 
an r-squared value of .87. A third complexity function 
was computed by calibrating AD1, BPR, N and SVOL 
using C1. With new weights, this function, C3, is used 
as the third complexity metric. 

The traffic situation in ZDC32, a sector in 
Washington Center and one of the busiest sectors in the 
country, was examined every minute for five days in 
2006. A careful examination of the data resulted in 
5744 aircraft configurations. The values of C1, C2, C3 
and N were computed for each of these configurations. 
Figure 1 shows the distribution of the sector counts and 
the three complexity metrics for these traffic 
conditions. The distributions in Figure 1 are 
normalized and their critical values are shown in Table 
1. The complexity metrics have a Poisson-like 
distribution. Thus, with C1 complexity measure, 
maximum complexity value in the data is 141. The 
value at 95th percentile was 82.  Thus, most traffic 
situations are not necessarily complex. The complexity 
function C2 results in negative values for certain 
aircraft configurations. The negative values are not 
meaningful and result from the inapplicability of 
certain complexity functions under all conditions.  

 
Figure 1.a Complexity C1 Distribution 

 
Figure 1.b Complexity C2 Distribution 

 

 
Figure 1.c Complexity C3 Distribution 

 
Figure 1.d Sector Count Distribution 

Table 1. Critical Values of Metrics 

Metric Minimum Maximum 95thPercentile 

C1 4 141 82 

C2 -.21 3.4 1.8 

C3 4.7 86 51 

N 4 18 12 

 

Figure 2 shows the geometry and the aircraft 
configuration at a given time. The complexity values 
are 77 for C1, 2.4 for C2, 62.8 for C3, and the sector 
count N is 14. The complexity values correspond to 
73%, 70%, 73% and 78% of the maximum values of 
these metrics. 

Dynamic density and its principal components, 
although not precise, are good indicators of sector 
controller activity. For dynamic density to be useful, 
one should be able to predict its behavior. Since 
dynamic density is a function of the position and 
velocity of all aircraft in a sector, a trajectory 
prediction algorithm can be used to predict dynamic 
density. The trajectory-based models predict sector 
demand and dynamic density adequately for short 



 

durations of up to twenty minutes. However, there are 
significant sources of error for predictions in the range 
of two hours. The accuracy of these predictions is 
impacted by aircraft modeling errors, lack of flight 
intent information, and departure and weather 
uncertainties [14-15]. 

Forecasting Complexity 
The forecasting of dynamic density requires 

accurate position and velocity for all of the aircraft.  As 
predicting even the correct sector count is hard, it is 
unreasonable to expect such information based on the 
current position and velocity of the aircraft and flight 
plan information.  However, it is possible to predict the 
mean number of aircraft expected for a prediction 
interval of two hours based on historical data [16]. 
Assuming the mean sector count still leaves many 
possible configurations for the same number of 
aircraft. The paper uses a six step approach: (a) To 
emphasize the impact of errors in congested sectors, 
select one of the busiest sectors in the U.S. national 
airspace on days with high delay, (b) select traffic 
configurations with the mean number of aircraft 
expected for the prediction interval, (c) perturb the 
configurations by infusing one, two or three additional 
aircraft to the configurations and re-compute the 
airspace complexity metric, (d) group situations where 
the addition of a single aircraft increases complexity 
significantly, (e) identify interior regions and 
boundaries of the sector with significant impact, and (f) 
characterize the worst case impact locations. The 
approach thus aims to provide information of practical 
value.  In general, the new aircraft can sometimes be 
an unscheduled flight (popup) that may appear at 
interior points or more often a re-routed or delayed 
aircraft that appears at sector boundaries. These cases 
will be studied separately.  

The approach described earlier is examined using 
ZDC32 as an example in the next Section and provides 
insights into the impact of poor forecasting on 
complexity. This is followed by a Section that 
discusses application of the approach to another sector 
in Indianapolis Center demonstrating the general 
applicability of this approach. 

Results for Washington Center Sector 
ZDC32 

For simplicity, results presented in the rest of this 
paper utilize just one of these complexity measures, 

C1. Similar analysis can be conducted for measures 
C2, C3 and others. As described earlier, traffic 
situations in ZDC32, a sector in Washington Center, 
were examined by the introduction of additional 
aircraft. ZDC32 is a high altitude sector in Washington 
Center. The primary function of ZDC is the separation 
of en route traffic and the sequencing of arrivals and 
departures of aircraft for the Washington-Baltimore 
Metropolitan Area, the New York Metropolitan Area, 
and Philadelphia.  

The traffic situation in ZDC32 was examined for 
an additional six days for a total of eleven days in 
2006. A list of locations where aircraft appear in 
ZDC32 was created and the resultant data consisted of 
6550 aircraft configurations. Even though the exact 
aircraft configuration cannot be predicted as discussed 
earlier, it is instructive to examine the impact on a 
specific configuration. The final results in the paper are 
based on examining a good cross-section of all 
possible aircraft configurations.  Therefore, the next 
subsection discusses the impact of a new aircraft on 
Dynamic Density of a specific aircraft configuration. 
This discussion is followed by the impact of additional 
aircraft as the number of aircraft in the configuration 
varies from a small number to MAP value.  

Impact of an Additional Aircraft on a Specific 
Configuration 

 

Figure 2. Aircraft Positions at 18:14 

To study the impact of an additional aircraft on 
complexity, first consider a specific configuration with 
a given number of aircraft. Figure 2 shows the aircraft 



 

configuration in ZDC32 at 18:14 Greenwich Mean 
Time (GMT) on July 21, 2006. 

 

Figure 3. Contours Corresponding to C1= .96 

 

Figure 4. Contours Corresponding to C1=1.0 

The C1 complexity value for this fourteen aircraft 
configuration is .73. The airspace complexity of 
ZDC32 was varied by the introduction of an additional 
aircraft at 18:14 GMT. It was found that the increase in 
complexity depends critically on the location of the 
new aircraft. To study the relation of the increase in 
complexity with location, the sector was divided into 
equal intervals in altitude, latitude and longitude. A 
new aircraft was introduced at each of these locations 
and the C1 complexity of the resulting fifteen aircraft 
configuration was computed in each case. For 

simplicity, the new aircraft was assumed to be flying at 
the cruise speed and in level flight. This simplification 
results in a small error in the absolute values and with 
little impact on the conclusions. The location of the 
15th aircraft corresponding to the maximum of the C1 
values provides the aircraft location with the most 
impact on C1 complexity. Figure 3 shows the contour 
of aircraft positions (shown in red color), which 
increase the C1 airspace complexity measure from .73 
to .96. Figure 4 shows two aircraft locations (shown in 
red) that increase C1 to a maximum value of 1.0.  The 
figures show that the locations of the new aircraft 
where the increase in complexity is the worst are close 
to aircraft clusters. 

Impact of an Unexpected Popup Aircraft  
The previous section identified the contours of 

positions of worst complexity impact when the exact 
positions of the aircraft are known. The need for 
accurate position and speed information is modified in 
this section by assuming that the expected number of 
aircraft is known and the actual number may vary by as 
much as three additional aircraft. For N-aircraft 
configurations, the approach described in the Section 
on Forecasting Complexity was used to characterize 
the impact of new aircraft. 

Table 2: Location of Aircraft Position for 
Maximum Impact on Complexity 

Number 
of 
aircraft  

Latitude  Longitude  Maximum 
observed 
complexity 

Worst 
Position 
increase  

15 36.8 -79.2 .94 .21 
14 37.0 -79.5 .82 .22 
12 36.7 -79.3 .65 .20 
8 36.8 -79.5 .40 .18 
4 36.4 -79.7 .18 .12 

All 36.6 -79.5 1.0 .25 
 

Table 2 shows the location of the new aircraft that 
increases the C1 complexity to its maximum value for 
different initial values of the number of aircraft in the 
sector. The data used had aircraft configurations 
varying from 4 to 18. MAP value for this sector is 18.   
The complexity of an aircraft configuration with 18 
aircraft shown in the Figure 5 had the worst value of 
141. All reported values are normalized with respect to 
this complexity value. The first row in the table 
describes the impact in the case of fifteen aircraft 
configurations. In these configurations, the worst-case 



 

impact takes place at latitude of 36.8 and a longitude of 
-79.2 with the value of increase to be 0.21. Thus, .21 
means that absolute value is 21% of the observed 
maximum value in the dataset. 

 
Figure 5. Most Complex Observed Configuration 

The maximum complexity value of observed fifteen 
aircraft configuration is .94. Thus, the overall 
complexity after adding an aircraft in worst situation 
can reach as high as 1.15.  The resultant situation can 
be 15% more complex than the worst situation 
observed in real data. This is clearly not a desirable 
situation. The second to fifth rows in the table lists 
entries for 14, 12, 8 and 4 aircraft. The last row lists 
results when all configurations are considered without 
limiting these to a specific number of aircraft in the 
configuration.  If the number of aircraft in 
configurations considered is larger, then the 
corresponding worst-case impact is larger as well.  As 
evident from the table, the situation resulting when one 
aircraft is added to 4, 8, or 12 aircraft configurations is 
of less concern as the worst complexity after adding an 
aircraft remains below 1.  Most of the time, number of 
aircraft in a sector will be well below MAP value as 
can be seen in Figure 1.d and hence, the appearance of 
an unexpected aircraft does not result in excessive 
workload.  While the points of worst impact in the 
Table 2 vary in latitude from 36.4 to 37 and in 
longitude from -79.2 to -79.7 depending on how many 
aircraft are in the configuration, all are in the 
neighborhood of each other. Also, these happen to be 
in the region with highest aircraft density where two 
major flows in ZDC32 intersect. Figure 6 below shows 
ZDC32 with the overall worst impact point as a small 

black rectangle. Visually, one can see that this is in the 
region of the intersection of two major flows in the 
sector. One may also identify the worst impacted 
region. Figure 6 also shows a contour plot with 80th 
percentile values of impact on complexity. Again, this 
region is centered on the intersection of major flows. 

 

Figure 6. Worst Impact Contours for ZDC32 

Impact of an Unexpected Aircraft at Sector 
Boundaries 

 

Figure 7. ZDC32 Boundaries 

While popup aircraft and late departure aircraft 
can appear at interior points in the sector, rerouted new 
aircraft are more likely to appear at sector borders.  
Therefore, an attempt was made to identify border 



 

segments, where an unexpected aircraft would make 
the worst impact. This was done by creating four 
boundary regions at ten flight levels, altitudes at 
intervals of 1000 feet, in ZDC32. The flight levels 
were selected in the range 24,000 to 33,000 feet. The 
four regions are shown as B1, B2, B3 and B4 in Figure 
7. The worst possible impact varies significantly 
depending on the boundary. The variation is illustrated 
using two borders: (1) B1 at 31000 feet and (2) B4 at 
25000 feet. While average probability of an aircraft 
entering at any of the forty boundaries in 10 flight 
levels is 2.5%, these are 5% for B1 at 31,000 feet and 
1% for B4 at 25,000 feet. 

As can be see from Table 3, for configurations 
with aircraft less than fifteen, the worst-case impact 
does not matter much as the worst-case complexity is 
already low.  For aircraft configurations with fifteen 
aircraft, the boundary B1 at altitude 31,000 feet had an 
increase in complexity of 0.21, whereas the boundary 
B4 at altitude 25,000 feet had an increase in 
complexity of 0.05.  Thus, there is significant variation 
in the impact on the complexity depending on the 
region of entry of the aircraft. 

Table 3. Impact of Aircraft Entry Point on 
Complexity 

Number of 
aircraft in 
configurations  

Maximum 
observed 
complexity  

 

Increase 
at B4 
25,000 ft 

Increase 
at B1 
31,000 ft 

15 .94 .05 .21 

14 .82 .05 .20 

12 .65 .05 .18 

8 .40 .05 .16 

4 .18 .05 .11 

All 1.0 .05 .21 

 

Impact of More Than One Unexpected Aircraft  
The analysis for the impact of an additional 

aircraft on complexity can be repeated in the event that 
the actual number of aircraft in the prediction interval 

of interest is off by two or three aircraft from the 
expected mean number of aircraft. The positions of 
worst impact at interior points are very similar to the 
single aircraft case. However, as can be seen from 
Table 4, the magnitude of the impact of introducing 
2nd or 3rd aircraft is higher than in single aircraft case. 
If both the first and second aircraft appear at the worst 
positions, then the overall increase would be 0.25 + 
0.29 = 0.54. 

Table 4. Location of Multiple Aircraft Positions in 
ZDC32 for Impact on Complexity  

Number of 
aircraft 

introduced 

Impact 
position 

Impact 
value 

Impact 
for B1 
31,000 

ft 

Impact 
for B4 
25,000 

ft 
1 36.6,79.5 .27 .25 .05 
2 36.6, 79.5 .29 .28 .05 
3 36.6, 79.5 .40 .32 .05 
 

Just as B1 at 31,000 feet is the worst boundary for 
a single new aircraft as compared to B4 at 24,000 feet, 
it is also the worst boundary in the case of a second or 
a third new aircraft.  Second or third aircraft appearing 
at B1 at 31,000 feet has worse impact as compared to a 
second or third aircraft appearing at B4 at 25,000 feet. 
The exact impact value is slightly worse than the 
impact value in the case of a single aircraft. Table 4 
shows these values. 

Results for ZID81 
To examine the generality of the approach, this 

methodology was applied to another sector in 
Indianapolis Center. ZID81 is a high altitude sector in 
the southwest corner of Indianapolis Center. It deals 
with en route traffic and departures from Chicago 
O’Hare (ORD) and Detroit (DTW) airports The MAP 
value is seventeen. The three major flows in the sector 
are (1) east-west flights between Cincinnati and Saint 
Louis, (2) flights between Chicago, Detroit and 
Milwaukee airports to Florida destinations and (3) 
over-flights between Texas and Tennessee to east coast 
destinations.  

The intersection of the three major flows is shown 
in the Fig. 8. The red contour in the figure indicates the 
80th percentile of complexity. The worst impact point 
at interior locations, shown as an asterisk in Fig. 8, 
centers on latitude of 37.90 and longitude of -87.80 and 
is near the point of intersection of three major flows.  



 

Like in the case of ZDC32, the impact of a new aircraft 
entering a sector at boundary depends on the entry 
boundary. Figure 9 shows four boundaries of the 
sector. The differential impact between boundaries can 
be illustrated with two boundaries, B3 at 31,000 feet 
and B1 at 28,000 feet. The probability of an aircraft 
entering B3 at FL310 is 12% whereas the probability 
of an aircraft entering B1 at 28,000 feet is 8%. As can 
be seen from Table 5, aircraft entering boundary B3 at 
31,000 feet have much more impact than aircraft 
entering boundary B1 at 28,000 feet. 

  

 

Figure 8. ZID81 Worst Contour Positions 

 

Figure 9. ZID81 Boundaries 

 

 

Table 5. Location of Multiple Aircraft Positions in 
ZID81 for Impact on Complexity 

Number of 
unexpected 

aircraft 

Worst 
Impact 

Position 

B3 at 
FL310 

B1 at 
FL280 

1 37.9, -87.8 .19 .06 
2 37.9, -87.8 .20 .06 
3 37.9, -87.8 .21 .06 

 

Concluding Remarks 
 

The forecasting of Dynamic Density metrics for 
prediction intervals of two hours and longer requires 
both the position and the velocity of all the aircraft.  As 
predicting even the correct sector count is hard, it is 
unreasonable to expect correct position and velocity 
information derived from schedule or flight plan 
information.  However, it is reasonable to assume the 
mean number of aircraft can be predicted for a 
prediction interval of two hours based on historical 
data, but there may be one, two or three additional 
aircraft.  Given the nature of uncertainties of positions 
of the aircraft, one can question if Dynamic Density 
metrics can be of any value. The approach outlined in 
this paper shows that a useful characterization of 
expected complexity can be made even in the presence 
of such uncertainties. 

The impact of additional aircraft on complexity is 
not uniform for all appearances of an additional 
aircraft, but depends on the location of the unexpected 
aircraft relative to the expected aircraft.  Knowledge of 
what is the magnitude of worst-case impact and in 
what situations the impact would be worst would be 
useful in traffic flow management.   New unexpected 
aircraft maybe popup aircraft that appear at interior 
points in a sector or aircraft that appear at boundaries 
of a sector.   Regions of worst impact for popup 
aircraft were found to be the intersections of major 
flows in the case of ZDC32 and ZID81. Also, it was 
found that the impact of a new aircraft appearing at 
sector boundaries varies significantly depending on the 
boundary in the case of both sectors ZDC32 and 
ZID81. 

 



 

This analysis methodology to characterize the 
prediction characteristics of dynamic density can be 
extended to other sectors and other models of dynamic 
density. 

Depending on the sector and the complexity 
function, when a sector is highly congested, the 
method identifies aircraft entering the sector at certain 
locations, boundaries and altitudes, whose errors in 
prediction contribute significantly to the increase in 
workload. If these errors cannot be reduced, it may be 
necessary to limit the traffic approaching the sector 
from these altitudes and boundaries. 

 

References 
[1] Final Report of RTCA Task Force 3: Free Flight 
Implementation, RTCA Inc., October 1995. 

[2] I. V. Lauderman, S. G. Sheldon, R. Branstrom and 
C. L. Brasil, “Dynamic Density: An Air Traffic 
Manangement Metric,” NASA TM 1998 112226Final 
Report of RTCA Task Force 3: Free Flight 
Implementation, RTCA Inc., October 1995. 

[3] P. Kopardekar, A. Schwartz, S. Magyarits and J. 
Rhodes,  “Airspace Complexity Measurement: An Air 
Traffic Control Simulation Analysis,” 7th USA/Europe 
Air Traffic Management R&D Seminar, Barcelona, 
Spain, 2007. 

[4] D. Delahaye and S. Puechmorel, “Air Traffic 
Complexity: Toward Intrinsic Metrics,” 3rd 
USA/Europe Air Traffic Management R&D Seminar, 
Naples, Italy, 2000. 

[5] J.M. Histon, R.J. Hansman, B. Gottlieb, H. 
Kleinwaks, S. Yenson, D. Delahaye and S. 
Puechmorel, “Structure Considerations and Cognitive 
Complexity in Air Traffic Control,” Proceedings of the 
21st Digital Avionics Systems Conference, Irvine CA, 
2002 

[6] K. Lee, E. Feron and A. Pritchett, “Air Traffic 
Complexity: An Input-output Approach,” Forty-Fourth 
Annual Allerton Conference, Allerton House, UIUC, 
Illinois, USA, 2006.  

[7] J. Welch, J.W. Andrews, B.D. Martin and 
B.Sridhar, “Macroscopic Workload Model for 

Estimating En Route Sector Capacity,” 7th 
USA/Europe Air Traffic Management R&D Seminar, 
Barcelona, Spain, 2007. 

[8] B. Sridhar, K. S. Sheth & S. Grabbe, “Airspace 
Complexity and Its Application in air traffic 
management,” 2nd USA/Europe Air Traffic 
Management R&D Seminar, Orlando, Florida, 1998.  

[9] C. Wanke, M.B. Callaham, D.P. Greenbaum, and 
A.J. Masalonis, “Measuring Uncertainty in Airspace 
Demand Predictions for Traffic Flow Management 
Applications,” AIAA Guidance, Navigation and 
Control Conference, Austin, TX, August 2003. 

[10] A. Massalonis, M.B. Callaham and C. Wanke, 
“Dynamic Density and Complexity Metrics for Real-
time Traffic Flow Management,” 5th USA/Europe Air 
Traffic Management R&D Seminar, Budapest, 
Hungary, 2003. 

[11] P. Kopardekar and S. Magyarits, “Measurement 
and prediction of Dynamic Density,” 5th USA/Europe 
Air Traffic Management R&D Seminar, Budapest, 
Hungary, 2003. 

[12] M. Bloem, C. Brinton, J. Hinkey, K.Leiden and 
K.S. Sheth, “A Robust Approach for Predicting 
Dynamic Density,” Proceedings of Aviation 
Technology Integration and Operations Technical 
Forum, Hilton Head, SC, 2009. 

[13] P. Flener, “Air-Traffic Complexity Resolution in 
Multi-Sector Planning Using Constraint 
Programming,” 7th USA/Europe Air Traffic 
Management R&D Seminar, Barcelona, Spain. 

[14] J. Krozel, D. Rosman, and S. Grabbe, “Analysis of 
En Route Sector Demand Error Sources,” AIAA 
Guidance, Navigation and Control Conference, August 
11-14, 2003, Austin, TX.  

[15] E.R. Mueller and G.B. Chatterji, “Analysis of 
aircraft arrival and departure delay characteristics,” 
Proceedings of Aviation Technology Integration and 
Operations Technical Forum, Los Angeles, CA, 2002. 

[16] N.Chen and B. Sridhar, “Weather-weighted 
periodic auto regressive models for sector demand 
prediction,” AIAA Guidance, Navigation, and Control 
Conference, Chicago, IL, Aug 2009. 

28th Digital Avionics Systems Conference 
October 25-29, 2009 

 


